X509Credential

e UZ| server certificates with RFC023

e Example Presentation Definitions

UZIl server certificates with RFC023

PKIl overheid & UZI server certificates

The Dutch government has a Public Key Infrastructure (PKI) that is used to establish trust between
parties. The PKI framework is currently in place and makes use of PKI Overheid Certificates issued
by the root CAs of the Dutch government. In healthcare a specific instance of PKI overheid
certificates are issued: the UZI certificates. These certificates are used to establish trust between
parties in the healthcare sector. The UZI certificates are issued by the UZI register, which is a
trusted party that is capable of verifying the identity of the holder of the certificate. The UZI
register signs the certificate with its own private key. The holder of the certificate can then use the
public key of the UZI register to verify the signature of the certificate. This way the holder of the
certificate can prove that the certificate is valid and that the information in the certificate is
correct. The UZI certificates are issued to:

e Individuals that work in healthcare, such as doctors, nurses, etc. They hold this certificate
on a UZI card.

e Organisations that work in healthcare, such as hospitals, pharmacies, etc. They hold this
certificate as server certificates.

UZI certificate structure for organisations

The UZI certificate is used to identify the holder of the certificate. The UZI certificate contains
information about the holder of the certificate. This information is used to identify the holder of the
certificate. The UZI certificate contains the following information (of intrest):

e The subject.CN The full FQN.
e The subject.0 the name of the holder of the certificate.
e The subject.serialNumber The URI number
e The subject.C The subject country
e The subject.ST The subject state
e The subject.L The subject locality (city)
e The subject.CN the full FQN.
e The san.otherName a string containing <OID CA>-<versie-nr>-<UZI-nr>-<pastype>-<Abonnee-
nr>-<rol>-<AGB-code> , where:
o <OID CA> is the OID of the CA that issued the certificate, 2.16.528.1.1007.99.2110 for
CIBG.
o <versie-nr> is the version number of the certificate.
o <UzZl-nr> is the UZI number of the holder of the certificate, same as
subject.serialNumber .
o <pastype> is the type of the holder of the certificate, always s.
o <Abonnee-nr> is the subscriber URA of the holder of the certificate.
o <rol> is the role of the holder of the certificate, always "0.00"

o <AGB-code> is the AGB code of the holder of the certificate.

Mapping UZI certificate to
X509Credential

The mapping of certificates to did:x509 depends on the UZI X.509 Certificate structure.

The ROOT G3

The did:x509 specification dictates that the fingerprint of the Root CA is part of the did:x509. For
mapping an UZI certificate to an X509Credential the ROOT CA MUST match one of the certificates

in the UZI ROOT CA register hierarchy. For G3 this is:

| |
| Staat der Nederlanden Root CA - G3 |

| v |
| Staat der Nederlanden Organisatie Services CA - G3 |

| \4 |

| UZl-register Medewerker niet op haam CA G3 |
| |

Field mapping of the UZI credential

The following fields are commonly used for mapping UZI certificates to X509Credentials

e The subject.0 the name of the holder of the certificate. Maps to subject.0 in the

X509Credential.
e The subject.L The subject locality (city)
e The san.otherName a string containing <OID CA>-<versie-nr>-<UZ|-nr>-<pastype>-<Abonnee-
nr>-<rol>-<AGB-code> , where:
o <OID CA> is the OID of the CA that issued the certificate, 2.16.528.1.1007.99.2110 for
CIBG.
o <versie-nr> is the version number of the certificate.
o <Uzl-nr> is the UZI number of the holder of the certificate, same as
subject.serialNumber .
o <pastype> is the type of the holder of the certificate, always s.

o <Abonnee-nr> is the subscriber URA of the holder of the certificate.
o <rol> is the role of the holder of the certificate, always "0.00"
o <AGB-code> is the AGB code of the holder of the certificate.

The use of UZI server certificate in the
Nuts network or identifying
organizations

The focus on trust in the NUTS network for organizations lies primarily on the URA number
identified as the <Abonnee-nr> on the UZI certificate. This number is used to identify the subject of
the certificate within the Dutch healthcare ecosystem . The subject of the certificate can use the
UZI certificate in combination with the private key to proof the ownership of the URA number. The
diagram below shows how the UZI certificate can be used to transfer the trust from the UZI register
acting as "authentieke bron" into the NUTS ecosystem using the did:x509 method and the
X509Credential Verifiable Credential.

|
| Keypair +——— did:x509 |

| ROOTCA | | vz | 1 | —
b | Certificate | | X509Credential 4 » VP |
| | || | L
| | 'l |
——— 1.Request | : ! I | |
| Authentic } Holder of - » Wallet +——1— Verifier |
| Source of | » Trust | 3.ssue | | | 4.Present | |
| Trust | 2.ssue ! ! | 1 -

I
| |

| 1
| did:web —— Keypair |
| |

This diagram represents the process of establishing trust, based on the use of X.509 certificates,
the X509Credential and did:x509 within a trust network. Below is a step-by-step explanation of the

diagram:

Key Components

1.

Root CA:

e The starting point for trust. The Root Certificate Authority (CA) is a trusted source that

issues and signs certificates to intermediate or end-user entities.

UZI Certificate:

e A specific X.509 certificate issued by the Root CA (or its intermediaries) to establish trust

for the holder (e.g., an organization or an individual).
Keypair:

Generated by the certificate holder, this is the private-public key pair required for signing
and authentication processes.

. did:x509:

A Decentralized Identifier (DID) based on an X.509 certificate. It links decentralized
systems with the trust of traditional X.509 certificates.

X509Credential:

A Verifiable Credential (VC), such as a "X509Credential," which is issued by the certificate
holder using its did:x509 identifier and signed with the corresponding keypair. This
credential is stored in the holder's wallet.

. Wallet:

A secure digital storage system for holding the X509Credential. It manages credentials
and is used for presenting them to verifiers.

Verifier:

An entity that validates the presented credential and establishes the holder's identity
based on its associated trust components (e.q., did:x509, certificate chain, etc.).

. did:web:

Another Decentralized Identifier (DID) the holder may use to represent their identity and
interact within the decentralized trust ecosystem.

Process Steps

Step 1: Keypair Generation and Request

The holder generates a keypair (private and public key) to represent their identity. They submit
the public key as part of a Certificate Signing Request (CSR) to the Root CA (or intermediate
CA). Within the CSR terminology, the holder is the subject of the CSR.

Step 2: Certificate Issuance

The Root CA (or its intermediate CA) verifies the request and issues an X.509 certificate (e.g., a
UZI certificate) to the subject. This certificate includes information about the subject (e.g., subject
name and organization) and is signed by the CA. This guarantees the authenticity of the certificate.
Note that the holder and subject are the same concepts but are named differently between the
different terminologies.

Step 3: X509Credential Issuance

The holder uses their X.509 certificate to create a X509Credential or Verifiable Credential.
The process includes:

1. Using the certificate's did:x509 identifier as the credential's issuer.
2. Signing this credential with the holder's private key (from the keypair).
3. Storing the credential securely in the Wallet for future use.

Step 4: Credential Presentation

When the holder needs to prove their identity to a verifier (e.g., during authentication), they
present the X509Credential from their wallet to the Verifier. This process includes:

1. The presentation of the digital credential as a Verifiable Presentation (VP).
2. Signing the presentation with the holder's private key to ensure it hasn't been tampered
with.

Step 5: Verification

The Verifier validates the credential and presentation. This includes:

1. Checking the integrity of the credential and presentation signature.

2. Confirming the certificate chain back to the Root CA to ensure the issuer of the X.509
certificate is authentic and trusted.

3. Validating the use case-specific attributes in the credential (e.g., fields like organization,
UZI number, or other subject information).

4. Ensuring the credential has not been revoked using methods like CRL.

Trust is Established:

If all checks pass, the Verifier trusts the credential presented by the holder. The credential's
trustworthiness is derived from:

1. The Root CA that anchors trust.
2. The validity of the X.509 certificate and the associated DID (did:x509).
3. Alignment of attributes between the X509Credential and the certificate.

Example Presentation Definitions

This page lists examples of Presentation Definitions using the X509Credential.

Shared Care Planning

e Discovery Service Definition

e Policy Definition

https://github.com/Zorgbijjou/scp-homemonitoring/blob/main/config/nuts/discovery/test%3ASharedCarePlanning2024.json
https://github.com/Zorgbijjou/scp-homemonitoring/blob/main/config/nuts/policy/test%3ASharedCarePlanning2024.json

