Use case migration

Together with V6 comes a new understanding of how data exchange should be secured across
organization boundaries. Some of the concept, promoted by Nuts in the past, are no longer viable
or don't make any sense anymore. V6 supports alternatives or this wiki describes how an
alternative should be implemented.

Nuts defines the NutsAuthorizationCredential Verifiable Credential type. VCs of this type were used
to authorize party A by party B. Then B had to check the contents of the VC when used. But since B
issues these credentials based on some identity of A and knowledge of its own, it's actually enough
to check the identity of A and this knowledge runtime as part of the authorization step. No
credentials needed...

The Nuts network was used to transfer OrganizationCredential type VCs to every participant. These
were used, in combination with the DID Document, to do service discovery. This mechanism
contradicts the usage of VCs. VCs are to be held in a wallet by the holder. The service discovery
mechanism replaces this mechanism.

User authentication was added to the access token request by signing some text with a means that
supports signing. This links a real user to the organization that is doing the request. Development
shows that signing is not yet a first class citizen and doing it properly conflicts with usability. A
proper authentication procedure lets the user sign a challenge given by the authenticating party,
this is usually the resource owner in healthcare data exchange. A user probably has to fetch data
from multiple sources per patient. With a proper procedure this would result in a lot of
authentication challenges. A more future proof model is when the user authenticates with its IdP.
Multiple IdPs could form a federation where they trust eachothers proces. Additionally the ID token
could be inspected by each relying party to obtain VCs presented at login.

Authorization

The biggest difference between a V6 style and V5 style use case is the way authorizations are
handled. Authorization has always been the responsibility of the implementer. The Nuts node only
provides assertions connected to an access token. With the NutsAuthorizationCredential these
assertions could be quite "rich". They listed resources and access rights. When doing a V6 style use
case you need to get this information from somewhere else. If all is well, you already have this
information in a DB, since the NutsAuthorizationCredential is only a representation of the
authorization state. Use identifying information from the token introspection (organization
name/city/id) to query your own database for allowed resources.

Service discovery



Service discovery in a V5 style use case depends on publication of NutsOrganizationCredentials
and services in DID Documents. This is replaced for V6 style use cases to a registration with a
central service (per use case). This has some pluses and minuses. The hardcoded requirement for a
NutsOrganizationCredential and dynamic requirement for service types in a DID Document has
been replaced by a flexible configuration. Per use case a service definition is published. This
definition contains a Presentation Definition which specifies the required Verifiable Credentials,
required endpoints and trust anchors. The trust APl is no longer needed for V6 style use cases.
From a client app point of view, you no longer register endpoints on a DID Document to enable a
use case, but you call the Discovery registration API to enable a use case for a subject (and thus a
DID). The registration API allows arbitrary key/value pairs which can be used to register endpoints.
This also allows for more fine grained control over your registration, for example only register the
receiver role for a use case. Once registered, the Nuts node will continue to refresh the registration
periodically. The main downside of this mechanism is that a use case needs to select a single party
to host the discovery server. The Nuts node acts as a server so each use case participant can fulfill
this role.

Todo

differences:

trust configuration

endpoint search

token requests (including policy definition)
token introspection

did method support

user auth

order:

e determine trust and security baseline

e determine policies

determine service registration params/vcs

all updated to v6

all migrate away from authorizing through NutsAuthorizationCredentials

all support new access tokens and token introspection

all register on discovery service (did:web)

V6 style client interaction (discovery search, token request with XIS/ECD user info)
Remove old service registration from DID documents

Remove old authorization logic

Revision #7
Created 5 November 2024 08:16:50 by Wout Slakhorst
Updated 11 November 2024 09:01:58 by Wout Slakhorst



