
Service Discovery
A party often exchanges data through its API endpoints. If a client only has the party's name or
identifier, it needs to find the API endpoints. Service Discovery via the Nuts node let clients find
involved parties and additional information, like API endpoints.

Technical details can be found on Read the Docs

Service definition
Every use case MUST define a service definition. The service definition specifies which Verifiable
Credentials are required, which issuers can be trusted and which registration parameters are
required. Because the service definition defines the trust, this is extremely important to get right. A
wrong definition may render all security measures ineffective!

Service identifier
Use cases must specify a service identifier. It's recommended to include the use case name in the
identifier, to avoid clashes with other use cases. It's also recommended to add a version number or
year of publication. Since the service identifiers are used in URLs, it's recommended to use lower-
case letters, numbers and a limited set of special characters: _-.:

Examples:

name2021
long_namev1.0
main:sub:v1

Discovery server
For each use case there can be only one discovery server. Each node can act as discovery server.
Choose one to start with, it can be changed later on. The endpoint for a service definition is
constructed as https://<host>/discovery/<service_id> .

DID methods
A service definition may limit the supported DID methods. This can be used to prevent
incompatibilities when updating Nuts node versions that introduce new DID methods.

Max validity

https://nuts-node.readthedocs.io/en/latest/pages/deployment/discovery.html

A service definition contains a presentation_max_validity parameter. This parameter defines how long
a registration is valid for. Clients will automatically refresh their registration if needed. This
parameter can be used to tweak when registrations are removed automatically. Automatic removal
is added to make sure abandoned registrations can no longer be found.

Presentation definition
The presentation definition is the most important part of the service definition. It defines which
Verifiable Credentials are required by a client to present and, maybe even more important, who the
issuer of those credentials may be. This defines the trust anchors for the use case.

A special credential is added for each registration in which the authorization server URL is added
and where there's options for additional parameters like endpoints or feature flags.

A presentation definition uses the Presentation Exchange (or PEX for short) standard.

Required field
All constraints added in a presentation definition will become searchable by default. If a use case
requires to find a participant based on a credential field then it's wise to add it as an required field.

 "presentation_definition": {
 "id": "coffeecorner2024",
 "format": ...,
 "input_descriptors": [
 {
 "id": "NutsOrganizationCredential",
 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "id": "organization_name",
 "path": [
 "$.credentialSubject.organization.name",

https://identity.foundation/presentation-exchange/

The NutsOrganizationCredential constraint example from above requires a credential to have 3 fields:
type , credentialSubject.organization.name and credentialSubject.organization.city . The constraint on type
also requires the value to be a string equal to NutsOrganizationCredential . The latter 2 field
constraints also specify an id . The value of this identifier can be used in a search query.

note: the double path definitions have to do with the fact a VC/VP can be in JWT or JSON format.

Require registration parameters
As discussed earlier, it's possible for a client to add additinal information to a registration. These
registration parameters can be made required in the presentation definition. This is done the same
way as for other required credential fields. The required credential type is
DiscoveryRegistrationCredential . Below is an example of an input descriptor making the auth_server_url
required.

 "$.credentialSubject[*].organization.name",
],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "organization_city",
 "path": [
 "$.credentialSubject.organization.city",
 "$.credentialSubject[*].organization.city",
],
 "filter": {
 "type": "string"
 }
 }
]
 }
 }
]
 }

...
{
 "id": "DiscoveryRegistrationCredential",
 "constraints": {
 "fields": [

Any key/value passed under registrationParameters in the API is transfered to the credentialSubject of
the DiscoveryRegistrationCredential .

Limit issuer
Most credentials will be issued by authentic sources. These sources will have a single issuer
identifier. You can limit the issuer of a credential with the following snippet:

 {
 "path": ["$.type"],
 "filter": {
 "type": "string",
 "const": "DiscoveryRegistrationCredential"
 }
 },
 {
 "id": "auth_server_url",
 "path": [
 "$.credentialSubject.authServerURL",
 "$.credentialSubject[*].authServerURL"
]
 }
]
 }
}
...

"constraints": {
 "fields": [
 {
 "path": ["$.issuer"],
 "purpose": "We can only accept credentials from a trusted issuer",
 "filter": {
 "type": "string",
 "pattern": "^did:web:example.com:iam:[\\w-]$"
 }
 }
]
}

The example above uses a regex to limit the issuer of a credential to any subject hosted by
example.com. It's possible to use a const instead of a regex to pin a single issuer.

Full Example
A full example can be found here

Registration parameters
Registration paramaters should be used to register endpoints that are required for a service. The
authorization server URL is added by default. Most services require a data endpoint, eg: a FHIR
endpoint. Such an endpoint can be made required in the service definition.

Registration parameters can also be used to define a limited set of roles a party fulfills within the
use case, eg: sender vs receiver . Since these values could be used to search on, a use case MUST
specify the allowed values.

Definition distribution
Since the service definition defines the trust anchors, it's important to setup a secure distribution
channel where clients can download the definition.

Revision #8
Created 13 May 2024 11:57:43 by Rein Krul
Updated 25 October 2024 09:35:29 by Wout Slakhorst

https://nuts-node.readthedocs.io/en/latest/pages/deployment/discovery.html#service-definitions

