
Designing a Nuts
Use Case
A Nuts use case enables organizations to that don't directly trust each other, but rely on trusted
third parties, to find each other and securely exchange data. The use case specifies which data is
exchanged, on which authorization grounds and how API endpoints can be found.

This book is meant for those who want to understand what decisions need to be made when
designing a use case, and how to build the artefacts (e.g. Presentation Definitions) that are
required by those that run the use case.

Note: this guide is not intended for use case implementors, who should refer to Implementing a
Nuts Use Case instead.

Service Discovery
Authorization

OAuth2 Scopes and Presentation Definition Mapping
AuthN using Verifiable Credentials
Credential Trust
OAuth2 Flows and Wallets
Access Policy (TODO)

Designing Step-by-Step
Case Study: ???

https://wiki.nuts.nl/books/implementing-a-nuts-use-case
https://wiki.nuts.nl/books/implementing-a-nuts-use-case

Service Discovery
A party often exchanges data through its API endpoints. If a client only has the party's name or
identifier, it needs to find the API endpoints. Service Discovery via the Nuts node let clients find
involved parties and additional information, like API endpoints.

Technical details can be found on Read the Docs

Service definition
Every use case MUST define a service definition. The service definition specifies which Verifiable
Credentials are required, which issuers can be trusted and which registration parameters are
required. Because the service definition defines the trust, this is extremely important to get right. A
wrong definition may render all security measures ineffective!

Service identifier
Use cases must specify a service identifier. It's recommended to include the use case name in the
identifier, to avoid clashes with other use cases. It's also recommended to add a version number or
year of publication. Since the service identifiers are used in URLs, it's recommended to use lower-
case letters, numbers and a limited set of special characters: _-.:

Examples:

name2021
long_namev1.0
main:sub:v1

Discovery server
For each use case there can be only one discovery server. Each node can act as discovery server.
Choose one to start with, it can be changed later on. The endpoint for a service definition is
constructed as https://<host>/discovery/<service_id> .

DID methods
A service definition may limit the supported DID methods. This can be used to prevent
incompatibilities when updating Nuts node versions that introduce new DID methods.

Max validity

https://nuts-node.readthedocs.io/en/latest/pages/deployment/discovery.html

A service definition contains a presentation_max_validity parameter. This parameter defines how long
a registration is valid for. Clients will automatically refresh their registration if needed. This
parameter can be used to tweak when registrations are removed automatically. Automatic removal
is added to make sure abandoned registrations can no longer be found.

Presentation definition
The presentation definition is the most important part of the service definition. It defines which
Verifiable Credentials are required by a client to present and, maybe even more important, who the
issuer of those credentials may be. This defines the trust anchors for the use case.

A special credential is added for each registration in which the authorization server URL is added
and where there's options for additional parameters like endpoints or feature flags.

A presentation definition uses the Presentation Exchange (or PEX for short) standard.

Required field
All constraints added in a presentation definition will become searchable by default. If a use case
requires to find a participant based on a credential field then it's wise to add it as an required field.

 "presentation_definition": {
 "id": "coffeecorner2024",
 "format": ...,
 "input_descriptors": [
 {
 "id": "NutsOrganizationCredential",
 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "id": "organization_name",
 "path": [
 "$.credentialSubject.organization.name",
 "$.credentialSubject[*].organization.name",

https://identity.foundation/presentation-exchange/

The NutsOrganizationCredential constraint example from above requires a credential to have 3 fields:
type , credentialSubject.organization.name and credentialSubject.organization.city . The constraint on type
also requires the value to be a string equal to NutsOrganizationCredential . The latter 2 field
constraints also specify an id . The value of this identifier can be used in a search query.

note: the double path definitions have to do with the fact a VC/VP can be in JWT or JSON format.

Require registration parameters
As discussed earlier, it's possible for a client to add additinal information to a registration. These
registration parameters can be made required in the presentation definition. This is done the same
way as for other required credential fields. The required credential type is
DiscoveryRegistrationCredential . Below is an example of an input descriptor making the auth_server_url
required.

],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "organization_city",
 "path": [
 "$.credentialSubject.organization.city",
 "$.credentialSubject[*].organization.city",
],
 "filter": {
 "type": "string"
 }
 }
]
 }
 }
]
 }

...
{
 "id": "DiscoveryRegistrationCredential",
 "constraints": {
 "fields": [
 {
 "path": ["$.type"],

Any key/value passed under registrationParameters in the API is transfered to the credentialSubject of
the DiscoveryRegistrationCredential .

Limit issuer
Most credentials will be issued by authentic sources. These sources will have a single issuer
identifier. You can limit the issuer of a credential with the following snippet:

The example above uses a regex to limit the issuer of a credential to any subject hosted by
example.com. It's possible to use a const instead of a regex to pin a single issuer.

Full Example

 "filter": {
 "type": "string",
 "const": "DiscoveryRegistrationCredential"
 }
 },
 {
 "id": "auth_server_url",
 "path": [
 "$.credentialSubject.authServerURL",
 "$.credentialSubject[*].authServerURL"
]
 }
]
 }
}
...

"constraints": {
 "fields": [
 {
 "path": ["$.issuer"],
 "purpose": "We can only accept credentials from a trusted issuer",
 "filter": {
 "type": "string",
 "pattern": "^did:web:example.com:iam:[\\w-]$"
 }
 }
]
}

A full example can be found here

Registration parameters
Registration paramaters should be used to register endpoints that are required for a service. The
authorization server URL is added by default. Most services require a data endpoint, eg: a FHIR
endpoint. Such an endpoint can be made required in the service definition.

Registration parameters can also be used to define a limited set of roles a party fulfills within the
use case, eg: sender vs receiver . Since these values could be used to search on, a use case MUST
specify the allowed values.

Definition distribution
Since the service definition defines the trust anchors, it's important to setup a secure distribution
channel where clients can download the definition.

https://nuts-node.readthedocs.io/en/latest/pages/deployment/discovery.html#service-definitions

Authorization
This chapter describes how authorization works and what decisions impact the design of a use
case.

Authorization

OAuth2 Scopes and Presentation
Definition Mapping
Scope design
When designing a system that uses OAuth2, you have to decide how scopes map to resources that
the client will attempt to access. "Resource access" is typically a specific REST-style HTTP
operation on a specific URL, e.g. POST /products/staplers/1 . Things to consider when designing scopes
are discussed in this section.

Broad v.s. narrow scopes
Broad scopes are generally high level e.g., a scope that gives access to a certain use case or larger
group of resources. Narrow scopes are often low-level e.g., a scope that gives read access to a
specific resource, limited set of resources or operations. Examples scopes for an employee that's
authorized to buy supplies for their employer:

Very broad: buyer
Broad: buyer office (office supplies only)
Broad: buyer lt-1000 (orders less than 1000 euros)
Narrower: buyer office:staplers (staplers only)
Very narrow: buyer office:staplers:red lt-10 (red staplers only, less than 10 euros)

How scopes are mapped to operations on resources influences:

How often clients need to request a new access token, if the previous token does not give
access to a required resource.
When access to a specific resource is authorized: when the access token is issued, or
when it's used.

Broad, high-level Scopes
High-level, broad scopes typically give access to an entire use case, service, or group of resources.
Checks that are executed before an access token is issued are limited to the Verifiable Credentials
the client can present.

Identification and authentication (user/client identity)
General user access to the functionality (e.g. is admin, can buy supplies, etc.)

A real-life example of a broad scope is the Nuts eOverdracht use case, which specifies the following
scopes:

eOverdracht-sender which gives access to the receiver's services required by a care
organization that wants to transfer a patient to another organization.
eOverdracht-receiver which gives access to the sender's services to the transfer receiver.

However, when a resource is accessed, the system needs to verify that the scope gives access to
the specific resource operation.

This type of scope is supported by the Nuts node.

Narrow, low-level Scopes
Narrow, low-level scopes typically give access to specific operations on specific resources, e.g.,
reading a specific patient's medical summary.

This type of scope is not supported by the Nuts node, because:

narrow scopes often contain resource identifiers, which requires wildcards/regexes in
policy mapping (more on that below), which is currently not supported by the Nuts node.
this leads to more access tokens, since each access token has a more limited use. If user
authentication involves manual input (e.g., presenting a credential using a mobile wallet),
user experience will deteriorate.

Another consideration is that using low-level scopes, moves most authorization decisions to the
access token issuance. This is viable and supported by the Nuts node, but complicated: it requires
the vendor to implement a REST API that understands Presentation Definitions.

Policies: Mapping Scope to Authentication Subject
Due to the ongoing development of personal authentication methods and associated protocols, the
Nuts node currently only supports the OAuth2 vp_token grant for production. User authentication
via OpenID4VP is experimental and usable for production. It's still required to pass user claims
within the token request if a data exchange contains PII (Personally Identifiable Information) and/or
medical data (e.g., Social Security Number or EHR records)

Mapping document
This section contains an example of a presentation definition mapping document as it could be
specified by a use case. The Presentation Definition is described more in detail in AuthN using
Verifiable Credentials.

{
 "zorgtoepassing": {
 "organization": {
 "format": {
 "ldp_vc": {
 "proof_type": [

https://wiki.nuts.nl/books/designing-a-nuts-use-case/page/authn-using-verifiable-credentials
https://wiki.nuts.nl/books/designing-a-nuts-use-case/page/authn-using-verifiable-credentials

 "JsonWebSignature2020"
]
 },
 "ldp_vp": {
 "proof_type": [
 "JsonWebSignature2020"
]
 },
 "jwt_vc": {
 "alg": [
 "ES256"
]
 },
 "jwt_vp": {
 "alg": [
 "ES256"
]
 }
 },
 "id": "pd_any_care_organization",
 "name": "Care organization",
 "purpose": "Finding a care organization for authorizing access to medical metadata",
 "input_descriptors": [
 {
 "id": "id_nuts_care_organization_cred",
 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "id": "organization_name",
 "path": [
 "$.credentialSubject.organization.name",
 "$.credentialSubject[0].organization.name"

],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "organization_city",
 "path": [
 "$.credentialSubject.organization.city",
 "$.credentialSubject[0].organization.city"
],
 "filter": {
 "type": "string"
 }
 }
]
 }
 }
]
 }
 }
}

Authorization

AuthN using Verifiable Credentials
To successfully negotiate an OAuth2 access token, the token issuer (OAuth2 Authorization Server)
will ask the client to present Verifiable Credentials. Nuts uses DIF Presentation Exchange for
requesting and presenting credentials during authentication. It's used by the service-to-service (
vp_token bearer) OAuth2 flow. It is also used by Discovery Services to restrict what can be
registered on it.

Presentation Definition
The party requesting a presentation, typically during access token negotiation, provides a
Presentation Definition to the credential wallet. The Presentation Definition specifies which
credentials the wallet must provide. If the wallet can't fulfill the definition, access token negotiation
will fail.

NutsCareOrganization example
Below is an example Presentation Definition specifying a NutsOrganizationCredential , not restricted to
a specific issuer. It specifies the following:

Only JSON-LD Verifiable Credentials are supported, which must be signed through
JsonWebSignature2020
No restrictions on the Verifiable Presentation format
Credential type must be NutsOrganizationCredential
credentialSubject of the credential must an object organization with string properties name
and city .

{
 "format": {
 "ldp_vc": {
 "proof_type": [
 "JsonWebSignature2020"
]
 }
 },
 "id": "pd_any_care_organization",
 "name": "Care organization",
 "purpose": "Finding a care organization for authorizing access to medical metadata",
 "input_descriptors": [
 {
 "id": "id_nuts_care_organization_cred",

 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "path": [
 "$.issuer"
],
 "filter": {
 "type": "string",
 "filter": {
 "type": "string"
 }
 }
 },
 {
 "id": "organization_name",
 "path": [
 "$.credentialSubject.organization.name"
],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "organization_city",
 "path": [
 "$.credentialSubject.organization.city"
],
 "filter": {
 "type": "string"
 }
 }
]

The identifiers used in the field constraints will be available in the token introspection result. The
key will be the field id and the value will be the value in the credential that matches the path .

Authorizing Access Tokens through Presentation Exchange
The following example requires a

See the DIF Presentation Exchange specification for more information.

 }
 }
]
}

https://identity.foundation/presentation-exchange/

Authorization

Credential Trust
Authentication on Nuts heavily depends on trusted credential issuers: any attribute, revelant to the
security model of the use case should be verifiable. E.g., if a party claims to be a care organization,
it should be able to present a Verifiable Credential to prove it. The same applies to a user
presenting their name or claiming to be a care professional.

Who should be the trusted issuer for a specific Verifiable Credential depends on the context. But
generally, issuers are authoritative registries (e.g. Dutch CIBG) or even state-issued (PID of natural
persons).

In practice, there are the following credential issuers:

Governing body issuing for a specific use case
In the KIK-v use case, governed by Zorginstituut Nederland, KIK-v Beheer issues to
participating organizations:

A credential that identifies the party as participating (care?) organization,
containing a Chamber of Commerce registration number.
Credentials that allow a participant to perform specific SPARQL queries at
another participant.

Use case implementors issuing with explicit trust
In the eOverdracht use case, implementing software vendors issue
NutsOrganizationCredential for their clients. Software vendors explicitly trust each
other.

Use case participant issuing with delegated trust
In the eOverdracht use case, participating care organizations issue a
NutsEmployeeCredential to their active user. It is trusted when the organization has a
trusted NutsEmployeeCredential

Authorization

OAuth2 Flows and Wallets
Nuts supports a custom OAuth2 flows for acquiring an access token: the service-to-service flow.

Service-to-Service flow
Credentials that are presented during this flow are subject to legal organizations (e.g. registered
care organizations).

This flow uses a custom grant type called vp_token-bearer . Presentation requests always and only
target organization wallets. User claims can be passed as tokens. If and how the user claims
correspond to the organization attestations is done by the authorization step.

The flow is secured with DPoP (optional). See "Security controls" for a detailed description.

Security controls
The following security controls are used by the OAuth2 flows:

VP-Secured Authorization Request (Nuts RFC021) provides integrity protection and
authenticity for the request.
Demonstrating Proof of Possession (DPoP, RFC9449) provides authenticity of the client
using the access token. This mitigates a MITM stealing access tokens. Usage is optional, to
be enabled by the client.

Authorization

Access Policy (TODO)
Anti-patterns

Bad: "Clients can access /Observation, but the FHIR server has to limit it to
/Observation?patient=XYZ" Requires transformation of the HTTP request at the Policy
Enforcement Point.
Better: TODO
Bad: "Clients can update the FHIR resource at /Task/<XYZ> using an HTTP PUT, but only
the status field. HTTP PUT is a replace operation, which requires the Policy Decision Point
to verify whether delta of the update only updates the status field, which can't be
performed atomically. Alternatively, it requires a use case-specific FHIR API, causing more
implementation effort.
Better: "Clients can update the status field of FHIR resource /Task/<XYZ> using an HTTP
PATCH. Updates to other fields must be rejected"

Designing Step-by-Step
This chapter puts the principles together by working towards the artefacts required for
implementing the use case.

Case Study: ???

