
Endpoint Discovery
Endpoint resolving is the act of finding endpoints (e.g. the location of a REST API) given a DID.

Using DID document services
Using well-known URIs

Using DID document
services
A party often exchanges data through its API endpoints. If a client only has the party's DID,
services in the DID document can be used to register API endpoints. A service in a DID document
describes its type and content (serviceEndpoint). A typical example is the FHIR base URL of the FHIR
API which is to be accessed by other parties.

Service Type
Use cases should specify the service types when using DID document services for endpoint
discovery. It's recommended to include the use case name in the service type, to avoid clashes
when multiple use cases use same service type. This might lead to duplication of endpoints, but
enables parties to differentiate API endpoints in case multiple use cases specify the same API
family.

E.g., given the use cases "Pizza Delivery Service" and "Pasta Delivery Service" both having an
"order" API, a bad approach would be:

An improved use case specification differentiates the service type to avoid clashes:

{
 "services": [
 {
 "id": "#order",
 "type": "order-api",
 "serviceEndpoint": "https://example.com/api/pizza/order"
 }
]
}

{
 "services": [
 {
 "id": "#order-pizza",
 "type": "order-pizza-api",

Service Endpoint
The serviceEndpoint property can contain a JSON string, object, array, or nesting of these types. If a
use case requires multiple API endpoints, it could use a JSON object to specify multiple API
endpoints:

Note that services in DID documents are not restricted to describing API endpoints only; another
example use for services in DID documents could be informing about who is administering the DID
document.

 "serviceEndpoint": "https://example.com/api/pizza/order"
 },
 {
 "id": "#order-pasta",
 "type": "order-pasta-api",
 "serviceEndpoint": "https://example.com/api/pasta/order"
 }
]
}

{
 "services": [
 {
 "id": "#order-pizza",
 "type": "pizza-restaurant",
 "serviceEndpoint": {
 "api": "https://example.com/api/pizza/order",
 "menu": "https://example.com/pizza-list.pdf"
 }
 }
]
}

Using well-known URIs
Many HTTP-based protocols (e.g. OpenID, OAuth2, SMART on FHIR) use well-known URIs to discover
protocol metadata, which in turn contains API endpoints and other protocol-specific information. An
alternative to DID document services could be using a well-known URI.

Although Nuts implements well-known URIs for OAuth/OpenID protocol support, it does not support
exposing arbitrary data on a well-known URI. Hosting a use case-specific well-known endpoint could
then be configured in a reverse proxy. But, as did:web DID documents can be resolved just as
easily as documents on well-known URIs, it might be preferred to use services in DID documents
instead.

Also note, that to be truly well-known as specified by RFC 8615, the URI must be registered at
IANA. In any case, a URI must be chosen that does not conflict with existing well-known URIs.

https://datatracker.ietf.org/doc/html/rfc8615
https://www.w3.org/TR/did-core/#services

