
Authorization
This chapter describes how authorization works and what decisions impact the design of a use
case.

OAuth2 Flows and Wallets
OAuth2 Scopes and Presentation Definition Mapping
AuthN using Verifiable Credentials
Credential Trust
Access Policy (TODO)

OAuth2 Flows and Wallets
Nuts supports 2 OAuth2 flows for acquiring an access token. The service-to-service flow and the
user flow.

Service-to-Service flow
The service-to-service flows is for data exchanges that don't require the presence of a (human)
user. Credentials that are presented during this flow are subject to legal organizations (e.g.
registered care organizations).

This flow uses a custom grant type called vp_token-bearer . Presentation requests always and only
target organization wallets.

The flow is secured with DPoP (optional). See "Security controls" for a detailed description.

When to use
Data exchanges for which this flow is suitable are background processes or exchanges that aren't
subject to GDPR (or other local privacy regulations).

User flow
The user flow us for data exchanges that require the presence of a (human) user. Credentials that
are presented during this flow are typically a combination of:

credentials subject to a legal organization, and
credentials subject to a natural person, registered caregiver or employee of a legal
organization.

At the time of writing, there is no governing body that issues Verifiable Credentials to (human)
users, meaning the only viable option is an employee-type credential that is a self-attestation (by
the organization) that the current user is an employee.

A typical example of requested credentials are a legal care organization and self-attested
EmployeeCredential that is issued by the care organization.

This flow uses OpenID for Verifiable Presentations (OpenID4VP), draft 21 at the time of writing.

The flow is secured with JAR, PKCE and DPoP (optional). See "Security controls" for a detailed
description.

When to use
Data exchanges for which this flow is suitable are ones for which the data holder/receiver requires
an identity of the end-user for logging means (Dutch norm NEN-7510) and/or GDPR compliance.

Security controls
The following security controls are used by the OAuth2 flows:

JWT-Secured Authorization Request (JAR, RFC9101) provides integrity protection and
authenticity for the credential presentation request. Usage is enforced by the server.
Proof Key for Code Exchange (PKCE, RFC7636) provides authenticity of the client
retrieving the access token. This mitigates a MITM stealing authorization codes. Usage is
enforced by the server.
Demonstrating Proof of Possession (DPoP, RFC9449) provides authenticity of the client
using the access token. This mitigates a MITM stealing access tokens. Usage is optional, to
be enabled by the client.

OAuth2 Scopes and
Presentation Definition
Mapping
Scope design
When designing a system that uses OAuth2, you have to decide how scopes map to resources that
the client will attempt to access. "Resource access" is typically a specific REST-style HTTP
operation on a specific URL, e.g. POST /products/staplers/1 . Things to consider when designing scopes
are discussed in this section.

Broad v.s. narrow scopes
Broad scopes are generally high level e.g., a scope that gives access to a certain use case or larger
group of resources. Narrow scopes are often low-level e.g., a scope that gives read access to a
specific resource, limited set of resources or operations. Examples scopes for an employee that's
authorized to buy supplies for their employer:

Very broad: buyer
Broad: buyer office (office supplies only)
Broad: buyer lt-1000 (orders less than 1000 euros)
Narrower: buyer office:staplers (staplers only)
Very narrow: buyer office:staplers:red lt-10 (red staplers only, less than 10 euros)

How scopes are mapped to operations on resources influences:

How often clients need to request a new access token, if the previous token does not give
access to a required resource.
When access to a specific resource is authorized: when the access token is issued, or
when it's used.

Broad, high-level Scopes

High-level, broad scopes typically give access to an entire use case, service, or group of resources.
Checks that are executed before an access token is issued are limited to the Verifiable Credentials
the client can present.

Identification and authentication (user/client identity)
General user access to the functionality (e.g. is admin, can buy supplies, etc.)

A real-life example of a broad scope is the Nuts eOverdracht use case, which specifies the following
scopes:

eOverdracht-sender which gives access to the receiver's services required by a care
organization that wants to transfer a patient to another organization.
eOverdracht-receiver which gives access to the sender's services to the transfer receiver.

However, when a resource is accessed, the system needs to verify that the scope gives access to
the specific resource operation.

This type of scope is supported by the Nuts node.

Narrow, low-level Scopes
Narrow, low-level scopes typically give access to specific operations on specific resources, e.g.,
reading a specific patient's medical summary.

This type of scope is not supported by the Nuts node, because:

narrow scopes often contain resource identifiers, which requires wildcards/regexes in
policy mapping (more on that below), which is currently not supported by the Nuts node.
this leads to more access tokens, since each access token has a more limited use. If user
authentication involves manual input (e.g., presenting a credential using a mobile wallet),
user experience will deteriorate.

Another consideration is that using low-level scopes, moves most authorization decisions to the
access token issuance. This is viable and supported by the Nuts node, but complicated: it requires
the vendor to implement a REST API that understands Presentation Definitions.

Policies: Mapping Scope to Authentication
Subject
Nuts differentiates data exchanges that contain PII (Personally Identifiable Information) and/or
medical data (e.g., Social Security Number or EHR records) and non-PII (e.g., medical condition
without correlatable information, or technical identifiers). These types require different levels of
authentication:

Data exchanges containing non-PII may be exchanged by a service, with only the legal
organization being authenticated.
In data exchanges that do contain PII, both legal organization and human user must be
authenticated. This means PII information cannot be exchanged without a human being
present.

The authentication subject, meaning whether an organization or user must be authenticated,
depends on the requested scope. This mapping is to be specified by the use case, distributed as
JSON document and loaded into participating Nuts nodes.

This mapping also determines which protocol is used by the requesting party;

exchanges with a human user always authenticate using OpenID4VP
exchanges without human user (only the organization is authenticated) can authenticate
using the OAuth2 vp_token grant for backend services or OpenID4VP.

Mapping document
This section contains an example of a presentation definition mapping document as it could be
specified by a use case. The Presentation Definition is described more in detail in AuthN using
Verifiable Credentials.

{
 "zorgtoepassing": {
 "organization": {
 "format": {
 "ldp_vc": {
 "proof_type": [
 "JsonWebSignature2020"
]
 },
 "ldp_vp": {
 "proof_type": [
 "JsonWebSignature2020"
]
 },
 "jwt_vc": {
 "alg": [
 "ES256"
]
 },
 "jwt_vp": {

https://wiki.nuts.nl/books/designing-a-nuts-use-case/page/authn-using-verifiable-credentials
https://wiki.nuts.nl/books/designing-a-nuts-use-case/page/authn-using-verifiable-credentials

 "alg": [
 "ES256"
]
 }
 },
 "id": "pd_any_care_organization",
 "name": "Care organization",
 "purpose": "Finding a care organization for authorizing access to medical metadata",
 "input_descriptors": [
 {
 "id": "id_nuts_care_organization_cred",
 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "id": "organization_name",
 "path": [
 "$.credentialSubject.organization.name",
 "$.credentialSubject[0].organization.name"
],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "organization_city",
 "path": [
 "$.credentialSubject.organization.city",
 "$.credentialSubject[0].organization.city"
],
 "filter": {
 "type": "string"

 }
 }
]
 }
 }
]
 },
 "user": {
 "format": {
 "ldp_vc": {
 "proof_type": [
 "JsonWebSignature2020"
]
 },
 "ldp_vp": {
 "proof_type": [
 "JsonWebSignature2020"
]
 },
 "jwt_vc": {
 "alg": [
 "ES256"
]
 },
 "jwt_vp": {
 "alg": [
 "ES256"
]
 }
 },
 "id": "pd_any_employee_credential",
 "name": "Employee",
 "purpose": "Finding an employee for authorizing access to medical metadata",
 "input_descriptors": [
 {
 "id": "id_employee_credential_cred",
 "constraints": {
 "fields": [
 {
 "path": [

 "$.type"
],
 "filter": {
 "type": "string",
 "const": "EmployeeCredential"
 }
 },
 {
 "id": "employee_identifier",
 "path": [
 "$.credentialSubject.identifier",
 "$.credentialSubject[0].identifier"
],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "employee_name",
 "path": [
 "$.credentialSubject.name",
 "$.credentialSubject[0].name"
],
 "filter": {
 "type": "string"
 }
 },
 {
 "id": "employee_role",
 "path": [
 "$.credentialSubject.roleName",
 "$.credentialSubject[0].roleName"
],
 "filter": {
 "type": "string"
 }
 }
]
 }
 }

]
 }
 }
}

AuthN using Verifiable
Credentials
To successfully negotiate an OAuth2 access token, the token issuer (OAuth2 Authorization Server)
will ask the client to present Verifiable Credentials. Nuts uses DIF Presentation Exchange for
requesting and presenting credentials during authentication. It used by service-to-service (vp_token
bearer OAuth2 flow) and user flow (OpenID4VP). It is also used by Discovery Services to restrict
what can be registered on it.

Presentation Definition
The party requesting a presentation, typically during access token negotiation, provides a
Presentation Definition to the credential wallet. The Presentation Definition specifies which
credentials the wallet must provide. If the wallet can't fulfill the definition, access token negotiation
will fail.

NutsCareOrganization example
Below is an example Presentation Definition specifying a NutsOrganizationCredential , not restricted to
a specific issuer. It specifies the following:

Only JSON-LD Verifiable Credentials are supported, which must be signed through
JsonWebSignature2020
No restrictions on the Verifiable Presentation format
Credential type must be NutsOrganizationCredential
credentialSubject of the credential must an object organization with string properties name
and city .

{
 "format": {
 "ldp_vc": {
 "proof_type": [
 "JsonWebSignature2020"
]
 }
 },
 "id": "pd_any_care_organization",

 "name": "Care organization",
 "purpose": "Finding a care organization for authorizing access to medical metadata",
 "input_descriptors": [
 {
 "id": "id_nuts_care_organization_cred",
 "constraints": {
 "fields": [
 {
 "path": [
 "$.type"
],
 "filter": {
 "type": "string",
 "const": "NutsOrganizationCredential"
 }
 },
 {
 "path": [
 "$.issuer"
],
 "filter": {
 "type": "string",
 "filter": {
 "type": "string"
 }
 }
 },
 {
 "path": [
 "$.credentialSubject.organization.name"
],
 "filter": {
 "type": "string"
 }
 },
 {
 "path": [
 "$.credentialSubject.organization.city"
],

Authorizing Access Tokens through
Presentation Exchange
The following example requires a

See the DIF Presentation Exchange specification for more information.

 "filter": {
 "type": "string"
 }
 }
]
 }
 }
]
}

https://identity.foundation/presentation-exchange/

Credential Trust
Authentication on Nuts heavily depends on trusted credential issuers: any attribute, revelant to the
security model of the use case should be verifiable. E.g., if a party claims to be a care organization,
it should be able to present a Verifiable Credential to prove it. The same applies to a user
presenting their name or claiming to be a care professional.

Who should be the trusted issuer for a specific Verifiable Credential depends on the context. But
generally, issuers are authoritative registries (e.g. Dutch CIBG) or even state-issued (PID of natural
persons).

In practice, there are the following credential issuers:

Governing body issuing for a specific use case
In the KIK-v use case, governed by Zorginstituut Nederland, KIK-v Beheer issues to
participating organizations:

A credential that identifies the party as participating (care?) organization,
containing a Chamber of Commerce registration number.
Credentials that allow a participant to perform specific SPARQL queries at
another participant.

Use case implementors issuing with explicit trust
In the eOverdracht use case, implementing software vendors issue
NutsOrganizationCredential for their clients. Software vendors explicitly trust each
other.

Use case participant issuing with delegated trust
In the eOverdracht use case, participating care organizations issue a
NutsEmployeeCredential to their active user. It is trusted when the organization has a
trusted NutsEmployeeCredential

Access Policy (TODO)
Anti-patterns

Bad: "Clients can access /Observation, but the FHIR server has to limit it to
/Observation?patient=XYZ" Requires transformation of the HTTP request at the Policy
Enforcement Point.
Better: TODO
Bad: "Clients can update the FHIR resource at /Task/<XYZ> using an HTTP PUT, but only
the status field. HTTP PUT is a replace operation, which requires the Policy Decision Point
to verify whether delta of the update only updates the status field, which can't be
performed atomically. Alternatively, it requires a use case-specific FHIR API, causing more
implementation effort.
Better: "Clients can update the status field of FHIR resource /Task/<XYZ> using an HTTP
PATCH. Updates to other fields must be rejected"

