
Cookbook
Small snippets and pieces of knowledge.

Local v5 Nuts node with Ngrok
V6 configuration without V5 features

Local v5 Nuts node with
Ngrok

Ideally a Nuts node runs in a data center or cloud environment with a fixed IP address behind a
ngress proxy. During development this is not always practical and there exists a need for running a
Nuts node locally on for instance a laptop behind a NAT.

In order for the node to receive requests, private transactions and synchronize with other nodes, it
must be reachable by external nodes. For this you can use the handy service ngrok. Ngrok
describes itself as follows:

1. Setup ngrok
To get started with ngrok, you can follow this tutorial

Once you have an account and access token setup, add the following lines to your ngrok
configuration:

This documentation only applies to use cases requiring the Nuts gRPC network (did:nuts
DIDs). If your use cases uses did:web DIDs (v6 functionality), you can use the development
Docker image. Refer to the Docker documentation for more information.

ngrok is a simplified API-first ingress-as-a-service that adds connectivity,
security, and observability to your apps in one line“

tunnels:
 grpc:
 proto: tcp
 addr: 5555
 n2n:
 proto: tcp
 addr: 1323

https://ngrok.com/
https://ngrok.com/docs/getting-started/
https://nuts-node.readthedocs.io/en/latest/pages/deployment/docker.html

This informs the ngrok application to create 2 tunnels, each forwarding tcp traffic to respectively
port 5555 for grpc traffic and 1323 for http traffic.

When you start ngrok with this config, the output will look something like this:

2. Certificates
Your node needs certificates for these endpoints to join a network.

For more information, read the official documentation.

Since ngrok uses the tcp.eu.ngrok.io path, you can generate a certificate for the ngrok domains and
stable network with the following command:

Now, copy the resulting files to a location accessable for your node and add the following section to
your nuts.yaml config file:

3. Endpoint configuration

Session Status online
Account OrgName (Plan: Free)
Version 3.2.2
Region Europe (eu)
Latency 15ms
Web Interface http://127.0.0.1:4040
Forwarding tcp://0.tcp.eu.ngrok.io:16077 -> localhost:5555
Forwarding tcp://7.tcp.eu.ngrok.io:18593 -> localhost:1323

Connections ttl opn rt1 rt5 p50 p90

$./issue-cert.sh stable '*.tcp.eu.ngrok.io'

tls:
 certfile: "*.tcp.eu.ngrok.io-stable.pem"
 certkeyfile: "*.tcp.eu.ngrok.io-stable.key"
 truststorefile: ./truststore-stable.pem

https://nuts-node.readthedocs.io/en/stable/pages/getting-started/3-configure-your-node.html

Your node needs to broadcast these endpoints to other nodes in order for them to connect to you.
You need to setup a vendor DID document. See step 3 in the official docs. For the NutsComm
service you will use the tunnel url which maps to port 5555 . The url will become
grpc://0.tcp.eu.ngrok.io:16077 in our example.

When a service uses oauth you must configure an oauth endpoint. Following our example, that
would become: http://7.tcp.eu.ngrok.io:18593/n2n/auth/v1/accesstoken .

An example of the vendor DID document service section with a test-service would look like this:

{
 "id": "did:nuts:FJ2WaKNaf6jKZ9tgJoNCmQKh3xoe9vFEBzj59WSkmSEV",
 ...
 "service": [
 {
 "id":
"did:nuts:FJ2WaKNaf6jKZ9tgJoNCmQKh3xoe9vFEBzj59WSkmSEV#AYQhYmNeYdoNthAiyAZ9ufAM54DF2ZqJmzGrT
i4dm6nT",
 "serviceEndpoint": "grpc://0.tcp.eu.ngrok.io:16077",
 "type": "NutsComm"
 },
 {
 "id":
"did:nuts:FJ2WaKNaf6jKZ9tgJoNCmQKh3xoe9vFEBzj59WSkmSEV#DtUY29HzYR1H2UofLXVJ3ru6TAxYY59NiBqSyfT
AeM5Y",
 "serviceEndpoint": "http://7.tcp.eu.ngrok.io:18593/n2n/auth/v1/accesstoken",
 "type": "oauth"
 },
 {
 "id":
"did:nuts:FJ2WaKNaf6jKZ9tgJoNCmQKh3xoe9vFEBzj59WSkmSEV#7jbTfYq8vjVwvhJt6Nayxzk1ki4xx1Bw1MwhebL
oDxau",
 "serviceEndpoint": {
 "oauth":
"did:nuts:FJ2WaKNaf6jKZ9tgJoNCmQKh3xoe9vFEBzj59WSkmSEV/serviceEndpoint?type=oauth"
 },
 "type": "test-service"
 }
]
}

https://nuts-node.readthedocs.io/en/stable/pages/getting-started/3-configure-your-node.html#registering-and-configuring-node-did

V6 configuration without V5
features
The configuration below show a minimal nuts.json config file:

did:nuts disabled, did:web enabled
discovery refresh of 1 minute for faster discovery during development
default mappings for discovery and policy files (mounts required)
SQLite will be used as DB
gRPC network is not started

url: https://<your-domain.com>
verbosity: debug
strictmode: false
internalratelimiter: false
http:
 log: metadata-and-body
 internal:
 address: :8081
auth:
 contractvalidators:
 - dummy
 irma:
 autoupdateschemas: false
policy:
 directory: /nuts/config/policy
discovery:
 definitions:
 directory: /nuts/config/discovery
 client:
 refresh_interval: 1m
vdr:
 didmethods:
 - web

