Basics

The basics needed for every use case.

Subject registration

Obtaining credentials

Service activation

Service search

Access tokens

e Authentication & authorization

Subject registration

The first thing you need to do is create some public/private key material for your subjects. We use
the term subjects for everything related to vendors, tenants, organizations and clients. Behind

every subject there can be multiple DIDs (decentralized identifiers). For most of the interactions
with the Nuts node, you'll be using the subject identifier.

Create a subject

POST /internal/vdr/v2/subject

{
"subject": "my_subject _identifier"

}

See API

The subject in the POST body is optional. If not given, the subject identifier will be generated for
you and returned in the result:

{
"subject": "my_subject_identifier",
"documents": [
{

"id": "did:nuts:B8PUHs2AUHbFF1xLLK4eZjgErECMXHxs68FteY7NDtCY",

}I

{
"id": "did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142",

You can now use these DIDs to issue and receive Verifiable Credentials.

List DIDs

For some operations you still need DIDs. Issuing credentials is an example. You can find your
subject's DIDs by calling the following API:

https://www.w3.org/TR/did-core/
https://nuts-node.readthedocs.io/en/latest/pages/integrating/api.html?urls.primaryName=Verifiable%20Data%20Registry%20(v2)

GET /internal/vdr/v2/subject/my_subject identifier

Result:

"did:nuts:B8PUHs2AUHbFF1xLLK4eZjgErECMXHxs68FteY7NDtCY",
"did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142"

Obtaining credentials

After you created a subject with some DID documents, it's time to give meaning to these
identifiers. Without Verifiable Credentials, DIDs are just useless identifiers. They receive meaning
when another party issues credentials to one of those DIDs. Attestations in the credentials will later
be used for authentication & authorization.

Issue a Verifiable Credential

With the Nuts node, you can issue any kind of credential from one of your subjects to any
resolvable DID (did:nuts, did:web, did:key and did:jwk). What the meaning of the credential is and
how it can be used is determined by the use case.

POST /internal/vcr/v2/issuer/vc

{
"@context": "https://nuts.nl/credentials/v1",
"type": "NutsOrganizationCredential",
"issuer": "did:web:example.com:iam:issuer",
"credentialSubject": {
"id": "did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142",
"organization": {
"name": "Care bears",
"city": "Care town"
}
}
"withStatusList2021Revocation": true

}

See API

The withStatusList2021Revocation option allows for credential revocation.

Response:

{
"@context":[
"https://nuts.nl/credentials/v1",
"https://w3id.org/vc/status-list/2021/v1",
"https://w3c-ccg.github.io/lds-jws2020/contexts/Ids-jws2020-v1.json",

https://nuts-node.readthedocs.io/en/latest/pages/integrating/api.html?urls.primaryName=Verifiable%20Credential%20Registry%20(v2)

"https://www.w3.0rg/2018/credentials/v1"
1
"type":["NutsOrganizationCredential","VerifiableCredential"],
"id":"did:web:example.com:iam:issuer#f2fb02d3-6216-47b9-8e54-b30438a1090e",
"issuanceDate":"2024-09-09T14:09:50.901123+02:00",
"issuer":"did:web:example.com:iam"issuer",
"credentialStatus":{
"id":"https://example.com/statuslist/did:web:example.com:iam:issuer/1#5",

"statusListCredential":"https://example.com/statuslist/did:web:example.com:iam:issuer/1",

"statusListindex":"5",
"statusPurpose":"revocation",
"type":"StatusList2021Entry"
I
"credentialSubject":{
"id":"did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142",
"organization": {
"name":"Care bears",
"city":"Care town"
}
h
"proof":{...}
}

Load a Verifiable Credential

The Nuts node currently doesn't support a new (Nuts network is deprecated) method for
exchanging Verifiable Credentials from issuer to holder. The issuer will have to send the credential
to the holder out-of-band. The holder can then upload the credential:

POST /internal/vcr/v2/holder/did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142/vc

{

"@context":[
"https://nuts.nl/credentials/v1",
"https://w3id.org/vc/status-list/2021/v1",
"https://w3c-ccg.github.io/lds-jws2020/contexts/lds-jws2020-v1.json",
"https://www.w3.0rg/2018/credentials/v1"

1

"type":["NutsOrganizationCredential","VerifiableCredential"],

"id":"did:web:example.com:iam:issuer#f2fb02d3-6216-47b9-8e54-b30438a1090e"
"issuanceDate":"2024-09-09T14:09:50.901123+02:00",

’

"issuer":"did:web:example.com:iam"issuer",
"credentialStatus":{
"id":"https://example.com/statuslist/did:web:example.com:iam:issuer/1#5",

"statusListCredential":"https://example.com/statuslist/did:web:example.com:iam:issuer/1",
"statusListindex":"5",

"statusPurpose":"revocation",
"type":"StatusList2021Entry"
h
"credentialSubject":{
"id":"did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142",
"organization": {
"name":"Care bears",
"city":"Care town"
}
h
"proof":{...}

Service activation

Before another party can interact with you, they will first need to find your endpoints. The
discovery service in the Nuts node can help you. The Nuts node can act as both server and client.
From a use case definition you'll receive the following information/files:

e Discovery Service Definition. A file that contains the ID, server address, allowed DID
methods and Presentation Definition for the discovery service. The Presentation Definition
lists a number of constraints. The constraint identifiers can be used as additional search

parameters.
e Use case specific endpoints. Endpoint types like: FHIR, notification, etc. These have to
be added through the additional registration parameters.

Example:

"id": "coffeecorner”,
"did_methods": ["web", "nuts"],
"endpoint": "https://example.com/discovery/coffeecorner",
"presentation_max_validity": 36000,
"presentation_definition": {
"id": "coffeecorner2024",
"format": {
"ldp_vc": {
"proof_type": [
"JsonWebSignature2020"
]
h
"jwt_vp": {
"alg": ["ES256"]
}
b
"input_descriptors": [
{
"id": "NutsOrganizationCredential",
"constraints": {
"fields": [
{
"path": [
"$.type"

I
"filter": {
"type": "string",
"const": "NutsOrganizationCredential"
}
+
{
"id": "organization_name",
"path": [
"$.credentialSubject.organization.name"
I
"filter": {
"type": "string"
}
h
{
"path": [
"$.credentialSubject.organization.city"
1
"filter": {
"type": "string"
}
}

The constraint for organization name (organization_name) can be used as search parameter.

Activate service for subject

POST /internal/discovery/v1/coffeecorner/my_subject identifier

{
"registrationParameters": {
"fhir": "https://api.example.com/fhir",
"contact": "alice@example.com"

}

As you can see, contact information can also be added. Follow the use case requirements.

The response can be a 200 OK which means the service has been activated immediately. It can
also be a 202 Accepted which means that the Nuts node received your request but was unable to
send the activation to the discovery server. The Nuts node will retry periodically. Others can't find
you yet. The logs will keep you posted.

To know if you're findable for others, you can perform a search on the registered subject.

Service search

You can find participants of a use case via their registered services. A use case defines the service
identifier and which credentials are required through the presentation definition. Any constraint in
the presentation definition with an identifier can also be used in the search query.

GET /internal/discovery/vl/coffeecorner?organization_name=Care*

Matching is case-insensitive and an * can be used as wildcard. (Similar to the SQL LIKE %)
Some valid examples for query parameters:

e credentialSubject.givenName=John

e credentialSubject.organization.city=Town

e credentialSubject.organization.name=Hospital*
e credentialSubject.organization.name=*clinic

e issuer=did:web:example.com

See API

Result:

{
"id":"did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142#049fb56e-1ba8-4e9e-a7af-
0071342a1378",
"credential_subject_id":"did:web:example.com:iam:657f064a-ebef-4f0f-aa87-88ed32db3142",
"vp'i...
"fields": {
"organization_name":"Care Bears"
b
"registrationParameters": {
"authServerURL":"https://example.com/oauth2/other_subject_identifier",
"fhir": "https://api.example.com/fhir",
"contact": "alice@example.com"
}
}

As you can see in the search results:

https://nuts-node.readthedocs.io/en/latest/pages/integrating/api.html?urls.primaryName=Discovery%20Service

e organization_name has been added because of the constraint mapping from the
presentation definition.

e registrationParameters from the service activation are included.

e authServerURL has been added autmatically. You need this for the access token request.

Access tokens

After finding a service endpoint to interact with, it's time to request an access token. You can
request one via your own Nuts node:

POST /internal/auth/v2/my_subject_identifier/request-service-access-token

{

"authorization_server": "https://example.com/oauth2/other_subject_identifier",
"scope": "coffee",

"token_type": "Bearer",

"credentials": [...]

}

e The authorization_server parameter is taken from the authServerURL registration parameter
from the search result.

e The scope is determined by the use case.
e The token_type by default is DPoP, you can also choose for Bearer .

e You can pass additional holder credentials via credentials . This is a way to embed user
identity tokens.

The scope is mapped by a policy file to a presentation definition. Policy files are provided by the

use case. If your wallet contains the correct credentials according to the presentation definition, an
access token will be given:

{

"access_token": "ciOiJSUzI1NilsInR5cCI6lkp",
"token_type": "Bearer",

"expires_in": 3600,

}

The access_token can then be put in the HTTP Authorization header.

Authentication & authorization

When a request comes in at your resource endpoint, an access token should be available in the
HTTP Authorization header. You can validate the token by calling:

POST /internal/auth/v2/accesstoken/introspect

token=ciOiJSUzI1NilsInR5cCl6lkp

Note: the content-type of this call is application/x-www-form-urlencoded .

And the result:

"active":true,

"iss": "https://example.com/oauth2/other_subject_identifier",
"client_id": "https://example.com/oauth2/my_subject_identifier",
"scope": "coffee",

"organization_name":"Care Bears"

Like with the discovery service, any constraint in the presentation definition of the policy file is also
added as key/value pair to the introspection result. This is the mechanism to use attestations from
presented credentials for authorization purposes.

The token introspection result is the last thing the Nuts node can do for you. From this point you
have to apply the authorization policy...

