
UZI Certificate Credential

Abstract
This proposal describes a method for issuing Verifiable Credentials by leveraging the existing
chains of trust provided by X.509 certificates. For this it uses the did:x509 did-method.

Status of this document

Introduction
With the introduction of the Self Sovereign Identity approach and thechniques, high trust
application can leverage the possibility of combining several identity claims. This allows for more
flexible and fine grained authorization rules and thus data protection. These techniques however
are quite new and we find ourselves in a tipical chicken-egg situation: personal or company wallets
can be the solution for SSI authentication needs, but without available credentials, these wallets
have no real value. Issuers are reluctant with issuing credentials until wallets are a tried and
proven technology. How can we overcome this catch-22?

Digital trust is not new. There are already a lot of parties who act as a QTSP and provide trust
attributes in the form of X.509 certificates. In the Netherlands for the care domain this is done by
the CIBG who issues UZI certificates for individuals and systems.

This specification introduces a method of bridging this the gap by issuing UZI Verifiable Credentials
based on the did:x509 method. With this we leverange the existing trust in the certigicate issuing
proces and translating this into a Verifiable Credential.

Chain of trust

This document has the status draft.

https://trustoverip.github.io/tswg-did-x509-method-specification/

The goal of this method is creating a verifiable chain of trust from the UZI Verifiable Credential
back to the trusted UZI Certificate Authority.

Often a did identifies an person or organisation this is not limited to those. Everything can be
identified by a did. With the did:x509 method , the certificate subject is the issuer of the credential. It
can sign the credential using its private key. A verifier can resolve and verify the certificate by
parsing the certificate chain, checking the validity and checking the values given in the did string.
If this checks out, the verified knows that there exists a valid certificate, issued by a specified CA
which contains certain values.

Example did:

The above did specifies that the certificate should be issued by a CA with the fingerprint
3oeULL9TgHNiKTamKoYdWnJXuxV_5ICu0sA8SGYUwerek-xY4Zgr5vaFuMwMPkAomtHOnHQRk5oVYpXcFgBLOg and
the certificate should contain a field san:otherName with the value 2.16.528.1.1007.99.2110-1-88899801-
S-88899901-00.000-11122201 .

When resolving the credential, the complete chain should be provided. The resolve operation can
be interpreted as follows: resolve a DID document for a x509 certificate where the issuer ca can be
identified a fingerprint and contains certain fields with certain values.

UZI Server certificates
The UZI production chain is described on the zorgcsp website. The UZI test chain is described here

Issuer
Server certificates are issued by the UZI-register Private Server CA G1 CA intermediate.

The sha256 fingerprint of these intermediate CA's can be generated by making a sha256sum of the
DER encoded files. WARNING: don't trust the values on this page, they are for

Test: 1b0961059b841654875d24545d0b93b37fd8a50c406a10a89702498f7e544b50

Production: bdd860ef8e87e2b2c7ebb34dd6e9e1771a3a3c5dec850ba7080e3e2904dbd897

Claims

did:x509:0:sha512:3oeULL9TgHNiKTamKoYdWnJXuxV_5ICu0sA8SGYUwerek-
xY4Zgr5vaFuMwMPkAomtHOnHQRk5oVYpXcFgBLOg::san:otherName:2.16.528.1.1007.99.2110-1-88899801-S-
88899901-00.000-11122201

https://www.zorgcsp.nl/ca-certificaten
https://acceptatie.zorgcsp.nl/ca-certificaten

The goal is to create a credential to uniquely identify a care organisation. We want to use the
following relevant fields from the certificate:

Claim path oid

Organisation name subject:O 2.5.4.10

City subject:L 2.5.4.7

Identifiers san:otherName 2.5.5.5

The identifiers field is unfortunately a bit cumbersome since it contains a concatenated string of a
lot of relevant identifiers in the following form:

<OID CA>-<version-nr>-<UZI-nr>-<pastype>-<Subscriber-nr>-<role>-<AGB-code>

Example of a san:otherName :

2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-11223344

Resolving a DID document
The DID document can be resolved based on the DID and a certificate chain.

1. Check if the CA-fingerprint of the DID matches with the root or one of the intermediate
certificates.

2. Validate the chain such as is common practice: validity, cryptography, hiarchy, revocation
status etc.

3. Check if the leaf certificate contains all policy keys and values from the DID
4. Create the DID document with the id field set to the DID and a assertionMethod containing

the correctly encoded public key from the leaf certificate.

Example DID document:

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id":
"did:x509:0:sha256:1b0961059b841654875d24545d0b93b37fd8a50c406a10a89702498f7e544b50::subject:O:D
e%20Regenboog:L:Hengelo::san:othername:2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-
11223344",
 "verificationMethod": [{

Creating a Verifiable Credential
The credential can only contain fields which are also part of the issuer did. The names must match.

Example credential:

Credential format

 "id":
"did:x509:0:sha256:1b0961059b841654875d24545d0b93b37fd8a50c406a10a89702498f7e544b50::subject:O:D
e%20Regenboog:L:Hengelo::san:othername:2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-
11223344#0",
 "type": "JsonWebKey2020",
 "controller":
"did:x509:0:sha256:1b0961059b841654875d24545d0b93b37fd8a50c406a10a89702498f7e544b50::subject:O:D
e%20Regenboog:L:Hengelo::san:othername:2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-
11223344",
 "publicKeyJwk": {
 // JSON Web Key
 }
 }]
}

}

{
 "issuer":
"did:x509:0:sha256:1b0961059b841654875d24545d0b93b37fd8a50c406a10a89702498f7e544b50::subject:O:D
e%20Regenboog:L:Hengelo::san:othername:2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-
11223344",
 "credentialSubject": {
 "subject:O": "De Regenboog",
 "subject:L": "Hengelo",
 "san:otherName": "2.16.528.1.1007.99.2110-1-900030787-S-90000380-00.000-11223344"
 }
}

In order for the credential to contain the certificate chain, we need it to be in the jwt_vc format.
The header of the JWT must contain the x5c field with the complete chain.

Verifying a credential
0. Extract the certificate chain from the credential proof
1. Resolve the issuer did document based on the certificate chain
2. Resolve the public key from the DID document
3. Check the credential signature
4. Check the credential validity
5. Check if the fields and values of the credentialSubject match the issuer did
6. Check if the issuer fingerprint matches the list of trusted issuers

Revision #5
Created 11 October 2024 13:11:46 by Steven van der Vegt
Updated 5 November 2024 09:06:42 by Steven van der Vegt

